

はていたの

e-joist for use as Rafters in Residential Construction

WATE PA PERTAN

-JUISI

CONTENTS

01 Overview

About e-joist Safety Data Sheets (SDS) Use of e-joist Data

02

Design Criteria

Terminology, Definitions and Notations	02
Structural Design Methodology	02
Design Loads and Deflection Criteria	03
Restraint to Top and Bottom Flanges	03

03

01

01

01

Span Tables

e-joist Rafter Span Table

04

04

e-joist Rafter Installation Diagrams

Bearing at Supports 05					
i.	Bevelled Ribbon Plate	05			
ii.	Birdsmouth Cuts for Seated Rafters	05			
iii.	Flush Cut Rafters	06			
iv.	Rafter Overhangs	06			
Tie-down at Supports					
i.	Skew Nailed at Supports	07			
ii.	Framing Anchor	07			
iii.	Strap Brace Over	07			
Web Stiffeners and Blocking at Supports					
i.	Web Stiffeners	08			
ii.	Rafter Blocking	08			
Ridge Connections					
i.	Rafter to Ridge Beam – Maximum 3 Degree Roof Pitch	09			
ii.	Rafter to Ridge Beam – Greater than 3 Degree Roof Pitch	09			
Box Gutter Installation 10					

01 OVERVIEW

e-joist is the premier I-joist product available in Australia. e-joist has many advantages over traditional building products, including its uniformity of engineering properties, its high strength to weight ratio and its availability in longer lengths of up to 12.6m.

e-joist is available in a range of depths and flange widths as presented below:-

Elongo Width	e-joist Depth (mm)					
Flange width	200	240	300	360		
45	ej20045	ej24045	ej30045	-		
63	-	ej24063	ej30063	ej36063		
90	-	ej24090	ej30090	ej36090		

Note: Availability of e-joist sizes and lengths varies by state. Check with your local Wesbeam office or approved Wesbeam distributor for available stock sizes.

About e-joist

e-joist utilises a Laminated Veneer Lumber (LVL) flange and a structural web. Flanges are manufactured by laminating timber veneers using phenolic adhesive in a continuous assembly in which the grain direction of all veneers runs longitudinally.

e-joist is manufactured from sustainably sourced timbers, making it an environmentally sustainable resource.

Safety Data Sheets (SDS)

SDS information on the LVL flange and web materials is available at www.wesbeam.com

Use of e-joist Data

The tables and other technical data provided in this publication are only applicable to e-joist manufactured by Wesbeam. This data should not be used for look-alike or substitute products. Use of the e-joist data for look-alike or substitute products can result in unsafe or unsatisfactory performance.

02 DESIGN CRITERIA

Terminology, Definitions and Notations

The terminology, definitions and notations used in this publication are similar to and consistent with those used and listed in *AS1684.2 - Residential timber framed construction, Part 2:Non-cyclonic areas.*

Continuous span table values apply to rafters that are continuous over three or more supports; if adjacent spans are unequal, the major span is not greater than twice the adjacent minor span.

Consider as continuous span if Span 1 (major) is not greater than 2 times Span 2. If it is, use the recommended e-joist Rafter Spans for Single Span. Refer to D1.

Diagram D1 – Continuous spans

Structural Design Methodology

The Span Tables in this publication have been developed in accordance with the structural models and action categories/load combinations outlined in *AS* 1720.3 – *Timber structures, Part 3: Design criteria for timber-framed residential buildings* except where noted below.

These tables are designed to be used for residential housing only. For use in other applications, including school buildings, offices, and a range of commercial applications, please refer to Wesbeam technical staff.

Design Loads and Deflection Criteria

Design loads used in these Span Tables represent common loads for residential roof structures. The designer can choose a weight that allows for roofing material (sheet metal or tiled roofs), ceiling material and any additional loads that may be present due to PV panels, insulation etc.

AS 1720.3 specifies a long-term deflection limit for rafters of Span/300 or 20mm. Given many rafters are directly supporting ceiling lining, Wesbeam adopts a more stringent long-term deflection criteria that algins with the deflection criteria of floor joists supporting ceiling lining; that is Span/300 or 15mm. Software with e-joists may be used to determine sizes and deflections outside the span table.

The list of engineering design criteria and limitations used in the development of these Tables are as follows:

- Long Term Deflection Limit = Span / 300 or 15mm (whichever is lesser)
- Short Term Deflection Limit = Span / 250 or 20mm (whichever is lesser)
- Min 45mm end bearing (unless noted otherwise)
- Min 45mm intermediate bearing

Limitations of use

- Roof pitch shall be less than 30 degrees
- Wind category to be maximum N3 in accordance with AS 4055 – Wind loads for housing
- Enclosed and protected from weather
- Installation is in accordance with this installation guide and building practices as shown in AS1684.2.

Restraint to Top and Bottom Flanges

e-joist rafters shall be laterally restrained along their top and bottom flanges. Restraint should be provided by ceiling/roof battens, direct fixing of roof sheeting/ceiling lining, or other forms of restraint including underbattens or graded battens.

Where suspended ceiling are used, restraint to the bottom flange shall be provided via one of the methods above with spacings not exceeding that listed in this section

Where rafter are designed on flat, graded battens over are required to achieve the desired roof pitch. Graded battens shall provide appropriate restraint to the top flange.

The following restraint conditions have been used for the development of the Span Tables and required where values from the span tables are used directly:

- Restraint to top flange = max 1200mm spacing (20-40kg/ m² roof weight; i.e. sheet roof)
- Restraint to top flange = max 330mm spacing (60-70kg/m² roof weight; i.e. tiled roof)
- Restraint to bottom flange = max 600mm spacing
- Penetrations through e-joist rafter webs are to be in accordance with Wesbeam e-joist Holes guide (wesbeam.com)
- Refer to e-joist installation guide (wesbeam.com) for on-site storage requirements and temporary bracing requirements during installation.

03 SPAN TABLES

TABLE 1: E-JOIST RAFTER MAXIMUM SPAN - SINGLE & CONTINUOUS SPAN (M)

	Roof Weight	Single Span Rafter Spacing (mm)			Continuous Span Rafter Spacing (mm)				
e-joist Size									
	(((9)))))	450	600	900	1200	450	600	900	1200
	20	5.9	5.6	5.1	4.8	6.7	6.7	6.4	5.5
	30	5.4	5.1	4.7	4.3	6.7	6.4	5.8	5.4
ej20045	40	5.1	4.8	4.3	3.9	6.4	6.0	5.4	5.1
	60	4.7	4.3	NR ⁽¹⁾	NR ⁽¹⁾	5.8	5.4	NR ⁽¹⁾	NR ⁽¹⁾
	70	4.5	4.1	NR ⁽¹⁾	NR ⁽¹⁾	5.6	5.2	NR ⁽¹⁾	NR ⁽¹⁾
	20	6.5	6.2	5.5	4.8	7.7	7.7	7.1	6.1
	30	6.0	5.6	5.1	4.6	7.5	7.1	6.5	6.0
ej24045	40	5.6	5.3	4.8	4.4	7.1	6.6	6.0	5.6
	60	5.1	4.8	NR ⁽¹⁾	NR ⁽¹⁾	6.5	6.0	NR ⁽¹⁾	NR ⁽¹⁾
	70	5.0	4.6	NR ⁽¹⁾	NR ⁽¹⁾	6.2	5.8	NR ⁽¹⁾	NR ⁽¹⁾
	20	7.1	6.7	6.2	5.8	8.2	8.2	7.7	7.3
	30	6.5	6.2	5.6	5.3	8.2	7.7	7.1	6.6
ej24063	40	6.2	5.8	5.3	4.9	7.7	7.3	6.6	6.2
	60	5.6	5.3	NR ⁽¹⁾	NR ⁽¹⁾	7.1	6.6	NR ⁽¹⁾	NR ⁽¹⁾
	70	5.5	5.1	NR ⁽¹⁾	NR ⁽¹⁾	6.8	6.4	NR ⁽¹⁾	NR ⁽¹⁾
	20	7.5	7.2	6.6	6.2	8.2	8.2	8.2	7.8
	30	7.0	6.6	6.1	5.7	8.2	8.2	7.6	7.1
ej24090	40	6.6	6.2	5.7	5.3	8.2	7.8	7.1	6.7
	60	6.1	5.7	NR ⁽¹⁾	NR ⁽¹⁾	7.6	7.1	NR ⁽¹⁾	NR ⁽¹⁾
	70	5.9	5.5	NR ⁽¹⁾	NR ⁽¹⁾	7.4	6.9	NR ⁽¹⁾	NR ⁽¹⁾
	20	7.3	6.6	5.5	4.7	8.2	8.2	8.0	7.1
	30	6.7	6.3	5.2	4.5	8.2	8.0	7.3	6.8
ej30045	40	6.3	5.9	5.0	4.3	8.0	7.5	6.8	6.4
	60	5.8	5.4	NR ⁽¹⁾	NR ⁽¹⁾	7.3	6.8	NR ⁽¹⁾	NR ⁽¹⁾
	70	5.6	5.2	NR ⁽¹⁾	NR ⁽¹⁾	7.1	6.6	NR ⁽¹⁾	NR ⁽¹⁾
	20	7.9	7.5	6.9	6.5	8.2	8.2	8.2	8.2
	30	7.4	6.9	6.4	6.0	8.2	8.2	8.0	7.5
ej30063	40	6.9	6.5	6.0	5.6	8.2	8.2	7.5	7.0
	60	6.4	6.0	NR ⁽¹⁾	NR ⁽¹⁾	8.0	7.5	NR ⁽¹⁾	NR ⁽¹⁾
	70	6.1	5.7	NR ⁽¹⁾	NR ⁽¹⁾	7.7	7.2	NR ⁽¹⁾	NR ⁽¹⁾
	20	8.5	8.1	7.5	7.1	8.2	8.2	8.2	8.2
	30	7.9	7.5	6.9	6.5	8.2	8.2	8.2	8.1
ej30090	40	7.5	7.1	6.5	6.0	8.2	8.2	8.1	7.6
	60	6.9	6.5	NR ⁽¹⁾	NR ⁽¹⁾	8.2	8.1	NR ⁽¹⁾	NR ⁽¹⁾
	70	6.7	6.2	NR ⁽¹⁾	NR ⁽¹⁾	8.2	7.8	NR ⁽¹⁾	NR ⁽¹⁾
	20	8.7	8.2	7.6	6.9	8.2	8.2	8.2	8.2
	30	8.0	7.6	7.0	6.5	8.2	8.2	8.2	8.2
ej36063	40	7.6	7.1	6.5	6.1	8.2	8.2	8.2	7.7
	60	7.0	6.5	NR ⁽¹⁾	NR ⁽¹⁾	8.2	8.2	NR ⁽¹⁾	NR ⁽¹⁾
	70	6.7	6.3	NR ⁽¹⁾	NR ⁽¹⁾	8.2	8.0	NR ⁽¹⁾	NR ⁽¹⁾
	20	9.3	8.9	8.2	7.8	8.2	8.2	8.2	8.2
	30	8.7	8.2	7.6	7.1	8.2	8.2	8.2	8.2
ej36090	40	8.2	7.8	7.1	6.5	8.2	8.2	8.2	8.2
	60	7.6	7.1	NR ⁽¹⁾	NR ⁽¹⁾	8.2	8.2	NR ⁽¹⁾	NR ⁽¹⁾
	70	7.3	6.8	NR ⁽¹⁾	NR ⁽¹⁾	8.2	8.2	NR ⁽¹⁾	NR ⁽¹⁾

(1) NR (not recommended)

For continuous, max span is listed as 8.2m due to max product length of 12.6m.

E-JOIST RAFTER INSTALLATION DIAGRAMS

BEARING AT SUPPORTS

i. Bevelled Ribbon Plate

The ribbon plate shall be the full width of the top plate and a minimum of 45mm thick. The ribbon plate shall be bevelled to suit the desired roof pitch; either on site or through the wall frame manufacturing process.

ii. Birdsmouth CutsWhere e-joist rafters are to be seated on the external walls, birdsmouth cuts shall
be in accordance with Diagram D3.

Care must be taken to ensure flanges are not over-cut, and that the flange fully bears onto the top plate. Web stiffeners are to be as per Web Stiffener specifications and shall be bevel-cut at the top of the e-joist rafter to match the roof pitch.

Diagram D3 - Detail for Birdsmouth Seating of e-joist Rafters

iii. Flush Cut Rafters

e-joist rafters may be "Flush cut" in-line with external walls when using the web stiffeners and nailing as specified in Diagram D9. The bevel-cut bottom flange of 06

Diagram D5 - Rafter Overhangs

as per Detail D9. Packing

below outrigger beam

(shown in Section)

Tie Downs not Shown for Clarity

20mm. Min 5 nails at each

into outrigger. Clinch nails

if required

end. Min 30mm penetration

plate as per

Detail D2

External wall

A

Diagram D8 - Strap Brace Over

WEB STIFFENERS AND BLOCKING AT SUPPORTS

i. Web Stiffeners

Diagram D9 - Web Stiffener Installation

e-joist Flange Width	Stiffener	Nail Length
45mm	17 x 60mm ply	65mm
63mm	27 x 60mm ply	65mm
90mm	2/19 x 60mm ply 39 x 60mm solid timber	90mm
e-joist Depth	Stiffener Nailing	g Requirements
200 240	3 x ø3.15 nails each side	clinched where possible
300 360	4 x ø3.15 nails each side	clinched where possible

ii. Rafter Blocking

Where e-joist rafters bear onto walls or beams, intermediate blocking is required for lateral restraint. Blocking is required every 1800mm or every three rafters (whichever is smaller) as well as at each end of the rafter set.

Blocking can be provided by using sawn timber, e-beam or e-joist and shall provide restraint to the top and bottom flanges. The bottom edge of the blocking is to be skew nailed to the beam/top plate as illustrated.

Diagram D10 - e-joist Rafter Blocking

RIDGE CONNECTIONS

i. Rafter to Ridge Beam – Maximum 3 Degree Roof Pitch For rafters in pitched roofs, the ridge beam (e.g. e-beam LVL) must be designed to transfer the loads of the rafters back down to the supporting structure.

For rafters with a roof pitch no more than 3 degrees, e-joist rafters can be fixed into the side of the ridge beam using a standard face-mounted hanging bracket. Face-mounted hanging brackets do not provide tie-down against uplift forces, so a tie-down connection must be provided over the top flange and fixed to the ridge beam (steel strap or similar as per consulting engineer's specifications) or AS1684.2 requirements.

Diagram D11 - Rafter to Ridge Beam

Rafters on a slope greater than 3 degrees may not be fixed with a standard face-mounted joist hanger. A bevelled pole-plate fixed into the side of the ridge beam may be designed to support the e-joist rafters. This will allow the rafters to bear onto the pole plate and be flush cut in accordance with the details shown in Diagram D12.

Diagram D12 - Rafter to Ridge Beam

Alternatively there are proprietary 'variable slope' joist hangers are also available to suit a range of different e-joist sizes when connecting sloping rafters into the ridge beam. Any proprietary bracket must be installed in strict accordance with the manufacturer's specifications.

ii. Rafter to Ridge Beam – Greater than 3 Degree Roof Pitch

BOX GUTTER

Notches for box gutters at the ends of e-joist rafters are permitted provided the end of the e-joist is reinforced as per Diagram D13.

The notch can be up to 300mm in length. The maximum depth of the notch is:

- 50mm for the 200mm and 240mm deep e-joist range
- 100mm for the 300mm and 360mm deep e-joist range

The reinforcement at the notched location is to consist of the following:

- 600mm long ply stiffeners (see table below for ply stiffener thickness) each side of web. Ply stiffener to match notch size of e-joist rafter.
- Fasten the ply stiffeners to web with Ø3.75 x 100 nails (number of rows as shown below)
- Nails to be spaced at 100mm and installed from alternate grid centres
- Nails to be installed from alternate sides of the web
- Nails to be clinched

Diagram D13 - Box Gutter Installation

e-joist Flange Width	Ply Stiffener
45mm	17mm
63mm	27mm
90mm	2/19mm 39mm

NOTES

WESTERN AUSTRALIA

190 Pederick Road Neerabup | WA | 6031 **T** 08 9306 0400

E sales@wesbeam.com

QUEENSLAND

3 Bult Drive Brendale | QLD | 4500 Dry Creek | SA | 5094 **T** 07 3385 3900 E sales.qld@wesbeam.com E sales@wesbeam.com

SOUTH AUSTRALIA

200 Cavan Road **T** 08 8214 8500

VICTORIA

Rear | 35 Greens Road Dandenong South | VIC | 3175 St Marys | NSW | 2760 **T** 03 8782 9500 E sales.vic@wesbeam.com

© Wesbeam Pty Limited ABN 89 004 268 017 WESB0661 April 2024

TECH HOTLINE

T 1300 356 460

8-24 Dunheved Circuit **T** 02 8856 8400 E sales.nsw@wesbeam.com

NEW SOUTH WALES

1300 362 148 | wesbeam.com